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Interplay between function and structure in complex networks
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We show that abrupt structural transitions can arise in functionally optimal networks, driven by small
changes in the level of transport congestion. Our results offer an explanation as to why so many diverse species
of network structure arise in nature (e.g., fungal systems) under essentially the same environmental conditions.
Our findings are based on an exactly solvable model system which mimics a variety of biological and social

networks. We then extend our analysis by introducing a renormalization scheme involving cost motifs, to
describe analytically the average shortest path across multiple-ring-and-hub networks. As a consequence, we
uncover a “skin effect” whereby the structure of the inner multiring core can cease to play any role in terms of
determining the average shortest path across the network.
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I. INTRODUCTION

There is much interest in the structure of the complex
networks which are observed throughout the natural, biologi-
cal, and social sciences [1-11]. The interplay between struc-
ture and function in complex networks has become a major
research topic in physics, biology, informatics, and sociology
[3-9]. For example, the very same links, nodes, and hubs
that help create shortcuts in space for transport may become
congested due to increased traffic yielding an increase in
transit time [6]. Unfortunately there are very few analytic
results available concerning network congestion and optimal
pathways in real-world networks [6-9,12-14].

The physics community, in particular, hopes that a certain
universality might exist among such networks. On the other
hand, the biological community knows all too well that a
wide diversity of structural forms can arise under very simi-
lar environmental conditions. In medicine, cancer tumors
found growing in a given organ can have very different vas-
cular networks. In plant biology, branching networks of plant
roots or aerial shoots from different species can coexist in
very similar environments, yet look remarkably different in
terms of their structure. Mycelial fungi [15] provide a par-
ticularly good example, as can be seen in Figs. 1(a) and 1(b)
which show different species of fungi forming networks with
varying degrees of lateral connections. These connections
arise from hyphal fusion events termed anastomoses [16].
Transport of nutrient through these networks is not just
through the center but has been likened to the operation of a
circulatory ring main [17]. Not only do fungi represent a
wide class of anastomosing, predominantly planar, transport
networks, but they have close parallels in other domains,
including vascular networks, road and rail transport systems,
river networks, and manufacturing supply chains. But given
that such biological systems could adapt their structures over
time in order to optimize their functional properties, why do
we observe such different structures as shown in Figs. 1(a)
and 1(b) under essentially the same environmental condi-
tions?

In this paper, we provide exact analytic results for the
effects of transport costs in networks with a combined ring-
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and-star topology [10]. We thus address the question above
by showing that quite different network structures can indeed
share very similar values of the functional characteristics rel-
evant to growth. We also show that small changes in the cost
of transport through the network can induce abrupt changes
in the optimal network structure. In addition to the theoreti-
cal interest of such phaselike structural transitions, our re-
sults suggest that a natural diversity of network structures
should arise under essentially the same environmental
conditions—as is indeed observed for systems such as fungi
[see Figs. 1(a) and 1(b)]. We then extend this analysis by
introducing a renormalization scheme involving cost motifs,
to describe analytically the average shortest path across
multiple-ring-and-hub networks. We note that although some
of the findings of Ref. [7] appear similar to the present ones
in terms of the wording of the conclusions, the context and
structures considered are quite different—in addition, the re-
sults in the present paper are analytic and are obtained in a
completely different way.

As a consequence of the present analysis, we uncover an
interesting “skin effect” whereby the structure of the inner
multiring core can cease to play any functional role in terms
of determining the average shortest path across the network.
The implication is that any resource that is found on the
perimeter of the network structure can be transported across
the structure without having to go through the central core—
and as a result, the network structure in the central core may
begin to die out because of a lack of nutrients. Interestingly,
there is experimental evidence that real fungal networks [15]
do indeed exhibit such a skin effect. Other real-world ex-
amples in which an inner network core ceases to be fed by
nutrients being supplied from the perimeter, and hence dies
out, include the vasculature inside the necrotic (i.e., dead)
region in a growing cancer tumor.

Our analytically solvable model system is inspired by the
transport properties of real fungi. A primary functional prop-
erty of an organism such as a fungus is to distribute nutrients
efficiently around its network structure in order to survive.
Indeed, fungi need to transport resources (carbon, nitrogen,
and phosphorous) efficiently from a localized source encoun-
tered on their perimeter across the structure to other parts of
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FIG. 1. (Color online) (a) Typical network for the fungus Resini-
cium bicolour. (b) Typical network for the fungus Hypholoma fas-
ciculare. This network has a far denser set of connections than (a),
yet both are able to thrive in the same environmental conditions. (c)
Typical network formed by Physarum polycephalum growing from
a central resource hub to a ring of subsidiary food resources as an
experimental system to examine the frequency of radial and tangen-
tial connections formed under different resource distributions. (d)
Our analytically solvable model showing radial connections from
peripheral nodes to an effective hub. (e) Mycelial fungus Phanero-
chaete velutina after 98 days growing from a central hublike re-
source. From day 48, the system is supplied with pairs of fresh
4 cm® wood resources at 10 day intervals. The resultant network
has both radial and circumferential connections, as in our model (d).
(f) The man-made road network in Houston, showing a complicated
inner “hub” which contains an embedded inner ring.

the organism. In the absence of any additional transport
costs, the average shortest path would be through the center,
however, the fungus faces an increasingly complex problem
in controlling the routing and distribution of resources as
traffic through the center increases. Hence the organism must
somehow “decide” how many pathways to build to the center
in order to ensure nutrients get passed across the structure in
a reasonably short time. In other words, the fungus—either
in real-time or as a result of evolutionary forces—chooses a
particular connectivity to the central hub. But why should
different fungi [Figs. 1(a) and 1(b)] choose such different
solutions under essentially the same environmental condi-
tions? Which one corresponds to the optimal structure? Here
we will show that, surprisingly, various structurally distinct
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fungi can each be functionally optimal at the same time.

Figure 1(d) shows our model’s ring-and-hub structure. Al-
though only mimicking the network geometry of naturally
occurring fungi [Figs. 1(a) and 1(b)], it is actually a very
realistic model for current experiments in both fungal and
slime-mold systems. In particular, experiments have already
been carried out with food sources placed at peripheral nodes
for fungi [Fig. 1(e)] and slime-mold [Fig. 1(c)] [18] with the
resulting network structures showing a wide range of distinct
and complex morphologies [18]. We use the term “hub” very
generally, to describe a central portion of the network where
many paths may pass but where significant transport delays
might arise. Such delays represent an effective cost for pass-
ing through the hub. In practice, this delay may be due to (i)
direct congestion at some central junction, or (ii) transport
through some central portion which itself has a network
structure [e.g., the inner ring of the Houston road network in
Fig. 1(f)]. We return to this point later on.

II. THE MODEL
A. The Dorogovtsev-Mendes model of a small-world network

We begin by introducing the Dorogovtsev-Mendes (DM)
model [11] of a small-world network. The DM model con-
sists of a ring-hub structure, and places n nodes around a
ring, each connected to their nearest neighbor with a link of
unit length. Links around the ring can either be directed in
the “directed” model or undirected in the ‘“undirected”
model. With a probability p each node is connected to the
central hub by a link of length 1. and these links are undi-
rected in both models.

We may proceed to solve this model, as in Ref. [11], by
first finding the probability P(€,m) that the shortest path
between any two nodes on the ring is €, given that they are
separated around the ring by length m. These expressions can
be found explicitly for both directed and undirected models.
Summing over all m for a given ¢ and dividing by (n—1)
yields the probability P(€) that the shortest path between two
randomly selected nodes is of length €. The average value

for the shortest path across the network is then €
=E’§;}€P(€). For the undirected model, the expressions are
more cumbersome due to the additional possible paths with
equal length. However, if we define nP(€)=Q(z,p) where
p=pn and z={/n, a simple relationship may be found be-
tween the undirected and directed models in the limit
n—o with p—0, that is Q,,4{z,p)=204/2z,p). Thus the
“directed” and “undirected” models only differ in this limit
by a factor of 2: z— 2z, with z now running from O to 1/2.

B. The addition of costs

We generalize the DM model of Sec. II A to include a
cost, ¢, for passing through the central hub [10]. This cost ¢
is expressed as an additional path length, however, it could
also be expressed as a time delay or reduction in flow rate for
transport and supply chain problems. We then consider a
number of cases for the structure of such a cost, e.g., a con-
stant cost ¢ where c¢ is independent of how many connections
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the hub already has, i.e., ¢ is independent of how “busy” the
hub is; a linear cost ¢ where ¢ grows linearly with the num-
ber of connections to the hub, and hence varies as p=np; or
nonlinear cost ¢ where ¢ grows according to a number of
nonlinear cost functions.

For a general, nonzero cost c¢ that is independent of € and
m, we can write (for a network with directed links):

P(€,€$c)=L (1)

n-1"

1

n—1"

P(6) =
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Pl<m,€>c)= (€ -c)p*(1 -p)cet, (2)

{—c—1
Pl=mAl>c)=1-p> > (i-o)1 —p)I-l(3)

i-c=1
Performing the summation gives
Pl=mtl>c)=[1+({-c-1pld-p)<t. (4

The shortest path distribution is hence

Ve<c

ﬁ[l +U-c-Dp+(n-1-0=-c)p*(1=p)t<', Ve>c.

Using the same analysis for undirected links yields a simple
relationship between the directed and undirected models. In-
troducing the variable y= ¢ with z and p as before, we may
define nP(£)=Q(z,y,p) and hence find in the limit p—0,
n—oo that Q,,.i{z,v,p)=20,2z,27,p). For a fixed cost,
not dependent on network size or the connectivity, this analy-
sis is straightforward. Paths of length [<c are prevented
from using the central hub, while for />c the distribution
P(l) is similar to that of Ref. [11].

III. LINEAR AND QUADRATIC COST FUNCTIONS

For linear costs, dependent on network size and connec-
tivity, we can show that there exists a minimum value of the

average shortest path € as a function of the connectivity to
the central hub. We denote this minimal path length as €
= |min- Such a minimum is in stark contrast to the case of

zero cost per connection, where the value of ¢ would just
decrease monotonically towards one with an increasing num-
ber of connections to the hub. The average shortest path can

be calculated from €=3}2}¢P(¢) from which we obtain

_(=py B+ -2

(pme) Po-1)
+p[2—20+2n—(c—1)(c—n)p]—3 clc-1)
pin-1) 2(n-1)
&)

Figure 2 shows the functional form of € with a cost of one
unit path length per connection to the hub (i.e., c=knp=kp,
with k=1). The optimal number of connections in order that
€ is a minimum is approximately 44 and depends on n. The
corresponding minimal shortest path €|, is approximately
85. Figure 3(a) shows analytic results for the optimal number

of connections which yield the minimal shortest path €| |mins
as a function of the cost per connection for a fixed network
size. Figure 3(b) shows analytic results for the optimal num-
ber of connections which yield the minimal shortest path

7 |min» @s a function of the network size for a fixed cost per
connection to the hub.

To gain some insight into the underlying physics, we
make some approximations that will allow us to calculate the
average shortest path analytically for a given cost function
that is valid within the approximations. We begin by noting
that for large n, or more importantly large n—c, the first term
in Eq. (5) may be written as (1 —p)"“— e . With the con-

— 150
100
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FIG. 2. Our model network showing transport pathways through
the central hub (connections of length 1/2 denoted by thick lines)
and around the ring (connections of length 1 denoted by thin lines).
Graph shows average shortest path length between any two nodes in
a n=1000 node ring, with a cost-per-connection to the hub of
k=1. There is an optimal value for the number of connections

(p=pn=44) such that the average shortest path length € is a mini-
mum. We denote this minimal shortest path length as €= €|,
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FIG. 3. Minimal shortest path length €|, (i.e., minimum value
of €) as obtained from Eq. (5). (a) Optimal number of connections
p=pn as a function of the cost-per-connection k to the hub. Results
are shown for n=1000 and 10 000. (b) Optimal number of connec-
tions p as a function of the network size. Results are shown for
k=2 and 4.

dition that the cost for using the hub is not too high, the
region containing the minimum shortest path €= €|, will
be at sufficiently high p to ignore this term, yielding a sim-
plified form for the average shortest path:

7~ pl2=2c+2n—-(c-1)(c-n)p]-3
p*(n—1)

We may then proceed by considering that, for a fixed net-
work size and a cost that depends on connectivity, to locate
the minima we differentiate Eq. (6) with respect to p and set
the result equal to zero and obtain

clc-1)
2(n-1)"

(6)

2 c dc de 6 ldc
-S(l=-c+n)———-c—+(+n)—+—5---—"=0
p pdp dp dp p> 2dp
(7
We substitute into this expression the scaled connectivity, p
=np, and it then becomes

2 } 1 2n\d
—p(l—c+n)=p—2<n+——c——n>—c+6. (8)
n n 2 p /dp

In the limit of n>c and p>1, the dominant terms on both
sides of Eq. (8) are those in n leaving
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ez ©)

dp p
From this expression we may obtain the location of the mini-
mum of the average shortest path for a given cost function
for which the approximations are valid. For example, in the
case of linear cost c=knp, we find that for the optimum
number of connections we have p=\/¥. Using k=1 and
n=1000, we obtain the value of the optimum number of
connections as 44.7, which agrees well with the exact value
calculated from Eq. (5). Inserting the optimum value for p
into Eq. (6) and keeping the largest terms we obtain

£~ \e’%, which also agrees well with the exact result.

We now consider quadratic cost functions, c=kp?. This
could be a physically relevant cost function when the cost for
using the central hub depends on the number of connected
pairs created, rather than the number of direct connections
made to the hub. Solving for the optimal number of connec-
tions using Eq. (9) gives p= %r%, corresponding to a mini-
mum average shortest path length €=~ 327kn2. One is also
able to consider a cost dependent on a general exponent
c=kp®. This gives for the optimal number of connections

M 1/(1+a)
p= (7) : (10)

The corresponding average shortest path is a more compli-
cated expression, but it scales with k and n as

amin o kll(1+a)l’la/(1+a). (11)

This analysis can be adapted to the “undirected” model
by using the usual scaling relation between the models that
was described above. For the case of linear costs on an
undirected network one gets an optimal number of connec-
tions at p~+\?% and a minimum average shortest path of

Zhﬁn2’¢zzg.

IV. GENERALIZED NONLINEAR COST FUNCTIONS

We now consider the functional form of € for nonlinear
cost functions, specifically a cubic cost function and a “step”
cost function. We show that for these nonlinear cost func-
tions, a highly nontrivial phase transition can arise. First we
consider the case of a general cubic cost function:

c(p)=Ap® +Bp> + Cp+D, (12)

where p is the scaled probability, p=pn, and A,B,C,D € R.
In order to demonstrate the richness of the phase transition
and yet still keep a physically reasonable model, we choose
the minimum in this cubic function to be a stationary point.
Hence the cost function remains a monotonically increasing
function, but features a regime of intermediate connectivities
over which congestion costs remain essentially flat (like the
“fixed charge” for London’s congestion zone). Since we are
primarily concerned with an optimization problem, we can
set the constant D=0. Hence
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FIG. 4. (Color online) Top: Landscape of the average shortest
path length € (vertical axis) as a function of the cubic cost-function
parameter A and the average number of connections to the central
hub p. Bottom: The value of p corresponding to a global minima in

€, as a function of the cubic cost parameter A.

c(p) =Ap* = 3Arp® + 3Ar°p, (13)
where r=§ is the location of the stationary point. Substitut-
ing into Eq. (5) yields the shortest path distribution for this
particular cost function in terms of the parameters A, r, p,
and n. The result is too cumbersome to give explicitly, how-
ever, we emphasize that it is straightforward to obtain, it is
exact, and it allows various limiting cases to be analyzed
analytically.

Figure 4 (top) shows the value of the average shortest

path € for varying values of p and A. As can be seen, the
optimal network structure (i.e., the network whose connec-

tivity p is such that € is a global minimum) changes abruptly
from a high connectivity structure to a low connectivity one,
as the cost-function parameter A increases. Figure 4 (bottom)
shows that this transition resembles a first-order phase tran-
sition. At the transition point A=A, both the high and low
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connectivity structures are optimal. Hence there are two
structurally inequivalent networks having identical (and op-
timal) functional properties. As we move below or above the
transition point (i.e., A <Ay or A>A., respectively) the
high or low connectivity structure becomes increasingly su-
perior.

Using the same approximations as those in Sec. III, we
may estimate the approximate value of the cubic function
parameter, A, that will lead to two minima in the average
shortest path distribution. We proceed by solving Eq. (9)
with our cubic function as the cost function:

d
pzd—c —2n=3A(p* - 2rp+ )t =2n=0.  (14)
p

The solutions to this equation are then stationary points in €,
and at least three stationary points are required for the dis-
tribution_to have multiple minima. We thus have p=0 and
p=(3£\7)r. Inserting the central value, (3—7)r, into Eq.
(14) gives an approximate lower bound for A:

n
Apin ™~ - 15
min }’4 ( )

Although this calculation does not give us the value of A,
it is expected (and results confirm such a conjecture) to be
close to Ap,;,. From this analysis, we can also see that both
the location of the minima and the distance between them is
governed by the cubic parameter r.

We have checked that similar structural transitions can
arise for higher-order nonlinear cost functions. In particular
we demonstrate here the extreme case of a “step” function,
where the cost is fixed until the connectivity to the central
hub portion reaches a particular threshold value. As an illus-
tration, we consider the particular case:

50
c(p,ro) = 50(2 sgn(p — irg) + 50) , (16)

i=1

where sgn(x)=-1,0,1 depending on whether x is negative,
zero, or positive, respectively, and r, determines the fre-
quency of the jump in the cost. Figure 5 (top) shows the

average shortest path € for this step cost function [Fig. 5
(bottom)] as p and r are varied. A multitude of structurally
distinct yet optimal network configurations emerge. As r
decreases, the step-size in the cost function decreases and the
cost function itself begins to take on a linear form, accord-

ingly, the behavior of € tends towards that of a linear cost
model with a single identifiable minimum. Most importantly,
we can see that once again a gradual change in the cost
parameter leads to an abrupt change in the structure of the

optimal (i.e., minimum €) network.

V. THE RING-HUB STRUCTURE AS A NETWORK MOTIF

We have allowed our ring-and-hub networks to seek op-
timality by modifying their radial connectivity while main-
taining a single ring. Relaxing this constraint to allow for
transitions to multiple-ring structures yields a number of re-
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FIG. 5. (Color online) Top: Landscape of the average shortest
path length € (vertical axis) as a function of the “step” cost-function
parameter ry and the connectivity p. Bottom: The “step” cost func-
tion as a function of the step-frequency parameter r, and p. As r
decreases, the cost-function becomes increasingly linear.

lated findings. In particular, allowing both the radial connec-
tivity and the number of rings to change yields abrupt tran-
sitions between optimal networks with different radial
connectivities and different numbers of rings. One could, for
example, consider this to be a model of a complicated fungal
structure [Figs. 1(b) and 1(e)] or of the interactions between
hierarchies within an organization, such as in Fig. 6.

To analyze analytically such multiple-ring structures we
introduce the following renormalization scheme. Consider
the two-ring-and-hub network in Fig. 1(f). For paths which
pass near the center, there is a contribution to the path length
resulting from the fact that the inner ring has a network
structure which needs to be traversed. Hence the inner-ring-
plus-hub portion acts as a renormalized hub for the outer
ring. In short, the ring-plus-hub of Eq. (1) can be treated as a
“cost motif” for solving multiple-ring-and-hub problems, by
allowing us to write a recurrence relation which relates the
average shortest path in a network with i+ 1 rings to that for
i rings:
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FIG. 6. (Color online) Schematic description of hierarchies in a
human organization, institution, or company. As shown, this dia-
gram can be redrawn as a multiple-ring-and-hub structure. Similar
networks are likely to exist in a range of social systems.
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where i=0 and €y=c with ¢ being a general cost for the
innermost hub. The case i=0 is identical to Eq. (1). As be-
fore, p;,; represents the probability of a link between rings
i+1 and i and n;,, is the number of nodes in ring i+ 1.

We investigate the properties of our renormalized N-ring
network by placing a number of constraints on the param-
eters and observing the average shortest path behavior, so we
may once again determine regimes of functionally optimal
network configurations. We begin by increasing the number
of rings to N=2, with the constraint that the number of nodes
on each ring is fixed. We find that the configuration that
yields the minimum average shortest path length has all the
ring probabilities, p;, equal. Figure 7 demonstrates the aver-
age shortest path distribution for such a case. Figure 7 also
demonstrates the accuracy of our analytic renormalized re-

sult, as compared to a full-scale numerical calculation for €.
If we allow the number of nodes on the two rings to be
different, we find that the configuration that optimizes the
shortest path favors a larger number of connections on the
ring with the most nodes. Returning to the original configu-
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FIG. 7. Average shortest path € for a network with N=2 rings,
each of size n=10 and with equal connectivity p,=p,=p.

ration, N=2 with an equivalent number of nodes on each
ring, we consider the effect of a cost on the central hub of the
inside ring. We find that a greater number of connections on
the ring without costs optimizes the network, as one might
expect.

The addition of further rings, such that N>2, leads to
some interesting results. For a network with an equivalent
number of nodes on each ring the optimal configuration re-
mains such that all the ring probabilities, p;, are equal. How-
ever, for N>2, we begin to see a deviation: connections
should be moved to the outer rings of the network (those
furthest away from the hub) in increasing numbers out to the
edge of the network to obtain the minimum shortest path. We
thus consider the properties of a network with varying N;
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FIG. 8. (Color online) Average shortest path € as a function of
the number of rings N that make up the network. In (a) all rings are
of size n=10° and in (b) the rings increase according to n;=100,
where i is the ring index. In both cases, the probability of connec-
tivity of a node is a constant and equal to p;=0.001. The innermost
ring has a hub with a constant cost ¢,. Here ¢( ranges from 0 to
effectively infinite. In all cases the limiting value for € is the same,
demonstrating the “skin effect” and hence the effective disconnec-
tion of the inner rings.
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FIG. 9. Two structurally inequivalent networks, which are func-
tionally equivalent in the sense that they have the same average
shortest path across them. The average shortest path across the
structure is the same for both networks, and both networks are
themselves optimal (i.e., minimum €). Nutrients found on the pe-
rimeter of each structure should therefore take the same average
time to cross it—this in turn implies that both structures would
coexist in the same favorable environmental conditions. (a) A
single-ring-and-hub network with a linear cost function. (b) A two-
ring-and-hub configuration. The inner ring-hub structure has the
same cost function as in (a). The similarity to the real fungi in Figs.
1(a) and 1(b) is striking.

equal ring probabilities p;; inner ring costs, ¢, that vary from
0—0; both fixed numbers of nodes on each ring, n;=n
=constant, and varying numbers of nodes on each ring such
that n;oci. Figure 8 shows the average shortest path distribu-
tion for several such cases. Interestingly, for large N the sys-
tem becomes indifferent to the cost of the central hub, c,
and all the distributions converge, in both the case of fixed
and varying numbers of nodes on each individual ring. This
is suggestive of an effective “skin effect,” as the center of the
network becomes effectively disconnected after the addition
of a large number of rings. The redundance of the central
portion of the network offers an explanation for an earlier
finding: that as we approach N> 2 the optimal configuration
ceases to be such that all innermost ring probabilities, p;, are
equal. We find that to optimize the network we need to move
the connections into the skin, more than likely as a result of
the detachment of the center of the network from the whole.

By comparison of the shortest path values of our multiple
ring networks, we have found a further important result. We
find that there are optimal network structures with different
numbers of rings and radial connectivities, yet which have
the same average shortest path length across them [19].
Hence, as before, optimal network structures exist which are
structurally very different, yet functionally equivalent. Figure
9 shows an explicit example of two such functionally equiva-
lent, optimal networks. It is remarkable that these images are
so similar to the real fungi shown in Figs. 1(a) and 1(b).

VI. CONCLUSION

In summary, we have analyzed the interplay between the
structure and function within a class of biologically moti-
vated networks, and have uncovered a structural phase tran-
sition. Depending on the system of interest (e.g., fungus or
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road networks) these transitions between inequivalent struc-
tures might be explored in real time by adaptive rewiring, or
over successive generations through evolutionary forces or
“experience.” Through the use of an approximation, we
treated the original network as a cost-motif for a larger net-
work and considered the circumstances under which such
networks obtained their optimal functional structure. The
equivalence in function, defined by the networks transport
properties, between various topologically distinct structures
may provide insight into the existence of such disparate
structure in real fungi. An important further implication of
this work is that in addition to searching for a universality in

PHYSICAL REVIEW E 74, 026116 (2006)

terms of network structure, one might fruitfully consider
seeking universality in terms of network function.
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